Sparse Features for PCA-Like Linear Regression
نویسندگان
چکیده
Principal Components Analysis (PCA) is often used as a feature extraction procedure. Given a matrix X ∈ R, whose rows represent n data points with respect to d features, the top k right singular vectors of X (the so-called eigenfeatures), are arbitrary linear combinations of all available features. The eigenfeatures are very useful in data analysis, including the regularization of linear regression. Enforcing sparsity on the eigenfeatures, i.e., forcing them to be linear combinations of only a small number of actual features (as opposed to all available features), can promote better generalization error and improve the interpretability of the eigenfeatures. We present deterministic and randomized algorithms that construct such sparse eigenfeatures while provably achieving in-sample performance comparable to regularized linear regression. Our algorithms are relatively simple and practically efficient, and we demonstrate their performance on several data sets.
منابع مشابه
Optimal Sparse Linear Encoders and Sparse PCA
Principal components analysis (PCA) is the optimal linear encoder of data. Sparse linear encoders (e.g., sparse PCA) produce more interpretable features that can promote better generalization. (i) Given a level of sparsity, what is the best approximation to PCA? (ii) Are there efficient algorithms which can achieve this optimal combinatorial tradeoff? We answer both questions by providing the f...
متن کاملSparse Projections over Graph
Recent study has shown that canonical algorithms such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) can be obtained from graph based dimensionality reduction framework. However, these algorithms yield projective maps which are linear combination of all the original features. The results are difficult to be interpreted psychologically and physiologically. This pape...
متن کاملOptimal Sparse Linear Auto-Encoders and Sparse PCA
Principal components analysis (PCA) is the optimal linear auto-encoder of data, and it is often used to construct features. Enforcing sparsity on the principal components can promote better generalization, while improving the interpretability of the features. We study the problem of constructing optimal sparse linear auto-encoders. Two natural questions in such a setting are: (i) Given a level ...
متن کاملLarge-Scale Sparse Principal Component Analysis with Application to Text Data
Sparse PCA provides a linear combination of small number of features that maximizes variance across data. Although Sparse PCA has apparent advantages compared to PCA, such as better interpretability, it is generally thought to be computationally much more expensive. In this paper, we demonstrate the surprising fact that sparse PCA can be easier than PCA in practice, and that it can be reliably ...
متن کاملSparse Principal Component Analysis Incorporating Stability Selection
Principal component analysis (PCA) is a popular dimension reduction method that approximates a numerical data matrix by seeking principal components (PC), i.e. linear combinations of variables that captures maximal variance. Since each PC is a linear combination of all variables of a data set, interpretation of the PCs can be difficult, especially in high-dimensional data. In order to find ’spa...
متن کامل